To enhance the fundamental knowledge in Physics and its applications relevant to various streams of Engineering and Technology.
PH8151 ENGINEERING PHYSICS |
UNIT I PROPERTIES OF MATTER
Elasticity – Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment - I-shaped girders - stress due to bending in beams.
UNIT II WAVES AND FIBER OPTICS
Oscillatory motion – forced and damped oscillations: differential equation and its solution – plane progressive waves – wave equation. Lasers : population of energy levels, Einstein‘s A and B coefficients derivation – resonant cavity, optical amplification (qualitative) – Semiconductor lasers: homojunction and heterojunction – Fiber optics: principle, numerical aperture and acceptance angle - types of optical fibres (material, refractive index, mode) – losses associated with optical fibers - fibre optic sensors: pressure and displacement.
UNIT III THERMAL PHYSICS
Transfer of heat energy – thermal expansion of solids and liquids – expansion joints - bimetallic strips - thermal conduction, convection and radiation – heat conductions in solids – thermal conductivity - Forbe‘s and Lee‘s disc method: theory and experiment - conduction through compound media (series and parallel) – thermal insulation – applications: heat exchangers, refrigerators, ovens and solar water heaters.
UNIT IV QUANTUM PHYSICS
Black body radiation – Planck‘s theory (derivation) – Compton effect: theory and experimental verification – wave particle duality – electron diffraction – concept of wave function and its physical significance – Schrödinger‘s wave equation – time independent and time dependent equations – particle in a one-dimensional rigid box – tunnelling (qualitative) - scanning tunnelling microscope.
UNIT V CRYSTAL PHYSICS
Single crystalline, polycrystalline and amorphous materials – single crystals: unit cell, crystal systems, Bravais lattices, directions and planes in a crystal, Miller indices – inter-planar distances - coordination number and packing factor for SC, BCC, FCC, HCP and diamond structures - crystal imperfections: point defects, line defects – Burger vectors, stacking faults – role of imperfections in plastic deformation - growth of single crystals: solution and melt growth techniques.
TOTAL : 45 PERIODS
OUTCOMES:
Upon completion of this course,
- The students will gain knowledge on the basics of properties of matter and its applications,
- The students will acquire knowledge on the concepts of waves and optical devices and their applications in fibre optics,
- The students will have adequate knowledge on the concepts of thermal properties of materials and their applications in expansion joints and heat exchangers,
- The students will get knowledge on advanced physics concepts of quantum theory and its applications in tunneling microscopes, and
- The students will understand the basics of crystals, their structures and different crystal growth techniques.
- Bhattacharya, D.K. & Poonam, T. ―Engineering Physics‖. Oxford University Press, 2015.
- Gaur, R.K. & Gupta, S.L. ―Engineering Physics‖. Dhanpat Rai Publishers, 2012.
- Pandey, B.K. & Chaturvedi, S. ―Engineering Physics‖. Cengage Learning India, 2012.
REFERENCES:
- Halliday, D., Resnick, R. & Walker, J. ―Principles of Physics‖. Wiley, 2015.
- Serway, R.A. & Jewett, J.W. ― Physics for Scientists and Engineers‖. Cengage Learning, 2010.
- Tipler, P.A. & Mosca, G. ― Physics for Scientists and Engineers with Modern Physics‘. W.H.Freeman, 2007.
No comments:
Post a Comment