ANNA UNIVERSITY CSE SYLLABUS
CS6504 COMPUTER GRAPHICS SYLLABUS
CS6504 COMPUTER GRAPHICS SYLLABUS
5TH SEM CSE
REGULATION 2013
OBJECTIVES:
The student should be made to:
Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input devices, Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.
UNIT II TWO DIMENSIONAL GRAPHICS
Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.
The student should be made to:
- Gain knowledge about graphics hardware devices and software
- used. Understand the two dimensional graphics and their
- transformations. Understand the three dimensional graphics and their
- transformations. Appreciate illumination and color models.
- Be familiar with understand clipping techniques.
Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input devices, Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives.
UNIT II TWO DIMENSIONAL GRAPHICS
Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to-viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms.
UNIT III THREE DIMENSIONAL GRAPHICS
Three dimensional concepts; Three dimensional object representations – Polygon surfaces- Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces.
TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations – Translation, Rotation, Scaling, composite transformations; Three dimensional viewing – viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods.
UNIT IV ILLUMINATION AND COLOUR MODELS
Light sources - basic illumination models – halftone patterns and dithering techniques; Properties of light - Standard primaries and chromaticity diagram; Intuitive colour concepts - RGB colour model - YIQ colour model - CMY colour model - HSV colour model - HLS colour model; Colour selection.
UNIT V ANIMATIONS & REALISM
ANIMATION GRAPHICS: Design of Animation sequences – animation function – raster animation – key frame systems – motion specification –morphing – tweening.
COMPUTER GRAPHICS REALISM : Tiling the plane – Recursively defined curves – Koch curves – C curves – Dragons – space filling curves – fractals – Grammar based models – fractals –turtle graphics – ray tracing.
TOTAL: 45 PERIODS
OUTCOMES:
At the end of the course, the student should be able to:
- Design two dimensional graphics.
- Apply two dimensional transformations.
- Design three dimensional graphics.
- Apply three dimensional transformations.
- Apply Illumination and color models.
- Apply clipping techniques to graphics.
- Design animation sequences.
TEXT BOOKS:
1. John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley ,”Computer Graphics: Principles and Practice”, , 3 rd Edition, Addison-Wesley Professional,2013. (UNIT I, II, III, IV).
2. Donald Hearn and Pauline Baker M, “Computer Graphics", Prentice Hall, New Delhi, 2007 (UNIT V).
1. John F. Hughes, Andries Van Dam, Morgan Mc Guire ,David F. Sklar , James D. Foley, Steven K. Feiner and Kurt Akeley ,”Computer Graphics: Principles and Practice”, , 3 rd Edition, Addison-Wesley Professional,2013. (UNIT I, II, III, IV).
2. Donald Hearn and Pauline Baker M, “Computer Graphics", Prentice Hall, New Delhi, 2007 (UNIT V).
REFERENCES:
1. Donald Hearn and M. Pauline Baker, Warren Carithers,“Computer Graphics With Open GL”, 4th Edition, Pearson Education, 2010.
2. Jeffrey McConnell, “Computer Graphics: Theory into Practice”, Jones and Bartlett Publishers, 2006.
3. Hill F S Jr., "Computer Graphics", Maxwell Macmillan” , 1990.
4. Peter Shirley, Michael Ashikhmin, Michael Gleicher, Stephen R Marschner, Erik Reinhard, Kelvin Sung, and AK Peters, Fundamental of Computer Graphics, CRC Press, 2010.
5. William M. Newman and Robert F.Sproull, “Principles of Interactive Computer Graphics”, Mc Graw Hill 1978.
6. http://nptel.ac.in/
No comments:
Post a Comment